Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Front Immunol ; 14: 1156714, 2023.
Article in English | MEDLINE | ID: covidwho-2313887

ABSTRACT

Introduction: Virus vectored genetic vaccines (Vvgv) represent a promising approach for eliciting immune protection against infectious diseases and cancer. However, at variance with classical vaccines to date, no adjuvant has been combined with clinically approved genetic vaccines, possibly due to the detrimental effect of the adjuvant-induced innate response on the expression driven by the genetic vaccine vector. We reasoned that a potential novel approach to develop adjuvants for genetic vaccines would be to "synchronize" in time and space the activity of the adjuvant with that of the vaccine. Methods: To this aim, we generated an Adenovirus vector encoding a murine anti-CTLA-4 monoclonal antibody (Ad-9D9) as a genetic adjuvant for Adenovirus based vaccines. Results: The co-delivery of Ad-9D9 with an Adeno-based COVID-19 vaccine encoding the Spike protein resulted in stronger cellular and humoral immune responses. In contrast, only a modest adjuvant effect was achieved when combining the vaccine with the same anti-CTLA-4 in its proteinaceous form. Importantly, the administration of the adjuvant vector at different sites of the vaccine vector abrogates the immunostimulatory effect. We showed that the adjuvant activity of Ad-α-CTLA-4 is independent from the vaccine antigen as it improved the immune response and efficacy of an Adenovirus based polyepitope vaccine encoding tumor neoantigens. Discussion: Our study demonstrated that the combination of Adenovirus Encoded Adjuvant (AdEnA) with an Adeno-encoded antigen vaccine enhances immune responses to viral and tumor antigens, representing a potent approach to develop more effective genetic vaccines.


Subject(s)
Adenovirus Vaccines , COVID-19 , Communicable Diseases , Neoplasms , Mice , Humans , Animals , Adenoviridae/genetics , COVID-19 Vaccines , Adjuvants, Immunologic
2.
Front Immunol ; 14: 1077938, 2023.
Article in English | MEDLINE | ID: covidwho-2311566

ABSTRACT

Contagious ecthyma (Orf), an acute and highly contagious zoonosis, is prevalent worldwide. Orf is caused by Orf virus (ORFV), which mainly infects sheep/goats and humans. Therefore, effective and safe vaccination strategies for Orf prevention are needed. Although immunization with single-type Orf vaccines has been tested, heterologous prime-boost strategies still need to be studied. In the present study, ORFV B2L and F1L were selected as immunogens, based on which DNA, subunit and adenovirus vaccine candidates were generated. Of note, heterologous immunization strategies using DNA prime-protein boost and DNA prime-adenovirus boost in mice were performed, with single-type vaccines as controls. We have found that the DNA prime-protein boost strategy induces stronger humoral and cellular immune responses than DNA prime-adenovirus boost strategy in mice, which was confirmed by the changes in specific antibodies, lymphocyte proliferation and cytokine expression. Importantly, this observation was also confirmed when these heterologous immunization strategies were performed in sheep. In summary, by comparing the two immune strategies, we found that DNA prime-protein boost strategy can induce a better immune response, which provides a new attempt for exploring Orf immunization strategy.


Subject(s)
Adenovirus Vaccines , Orf virus , Humans , Animals , Mice , Sheep , Orf virus/genetics , Immunization , Vaccination , Adenoviridae/genetics
3.
Vaccine ; 41(19): 3047-3057, 2023 05 05.
Article in English | MEDLINE | ID: covidwho-2294362

ABSTRACT

Q fever is a highly infectious zoonosis caused by the Gram-negative bacterium Coxiella burnetii. The worldwide distribution of Q fever suggests a need for vaccines that are more efficacious, affordable, and does not induce severe adverse reactions in vaccine recipients with pre-existing immunity against Q fever. Potential Q fever vaccine antigens include lipopolysaccharide (LPS) and several C. burnetii surface proteins. Antibodies elicited by purified C. burnetii lipopolysaccharide (LPS) correlate with protection against Q fever, while antigens encoded by adenoviral vectored vaccines can induce cellular immune responses which aid clearing of intracellular pathogens. In the present study, the immunogenicity and the protection induced by adenoviral vectored constructs formulated with the addition of LPS were assessed. Multiple vaccine constructs encoding single or fusion antigens from C. burnetii were synthesised. The adenoviral vectored vaccine constructs alone elicited strong cellular immunity, but this response was not correlative with protection in mice. However, vaccination with LPS was significantly associated with lower weight loss post-bacterial challenge independent of co-administration with adenoviral vaccine constructs, supporting further vaccine development based on LPS.


Subject(s)
Adenovirus Vaccines , Coxiella burnetii , Q Fever , Animals , Mice , Coxiella burnetii/genetics , Q Fever/prevention & control , Lipopolysaccharides , Bacterial Vaccines/genetics , Vaccination , Immunization , Adenoviridae/genetics
5.
Hum Vaccin Immunother ; 19(1): 2175558, 2023 12 31.
Article in English | MEDLINE | ID: covidwho-2284830

ABSTRACT

Herpes zoster (HZ) results from waning immunity following childhood infection with varicella zoster virus (VZV) but is preventable by vaccination with recombinant HZ vaccine or live HZ vaccine (two doses or one dose, respectively). Vaccine efficacy declines with age, live HZ vaccine is contraindicated in immunosuppressed individuals, and severe local reactogenicity of recombinant HZ vaccine is seen in up to 20% of older adults, indicating a potential need for new vaccines. Nonreplicating chimpanzee adenovirus (ChAd) vectors combine potent immunogenicity with well-established reactogenicity and safety profiles. We evaluated the cellular and humoral immunogenicity of ChAdOx1 encoding VZV envelope glycoprotein E (ChAdOx1-VZVgE) in mice using IFN-γ ELISpot, flow cytometry with intracellular cytokine staining, and ELISA. In outbred CD-1 mice, one dose of ChAdOx1-VZVgE (1 × 107 infectious units) elicited higher gE-specific T cell responses than two doses of recombinant HZ vaccine (1 µg) or one dose of live HZ vaccine (1.3 × 103 plaque-forming units). Antibody responses were higher with two doses of recombinant HZ vaccine than with two doses of ChAdOx1-VZVgE or one dose of live HZ vaccine. ChAdOx1-VZVgE boosted T cell and antibody responses following live HZ vaccine priming. The frequencies of polyfunctional CD4+ and CD8+ T cells expressing more than one cytokine (IFN-γ, TNF-α and IL-2) were higher with ChAdOx1-VZVgE than with the conventional vaccines. Results were similar in young and aged BALB/c mice. These findings support the clinical development of ChAdOx1-VZVgE for prevention of HZ in adults aged 50 years or over, including those who have already received conventional vaccines.


Subject(s)
Adenovirus Vaccines , Herpes Zoster Vaccine , Herpes Zoster , Animals , Mice , Herpesvirus 3, Human , Adenoviridae/genetics , Antibodies, Viral , Herpes Zoster/prevention & control , Vaccination/methods , Cytokines , Immunogenicity, Vaccine
7.
Front Immunol ; 13: 909995, 2022.
Article in English | MEDLINE | ID: covidwho-2080129

ABSTRACT

Background: Recent studies have shown the presence of SARS-CoV-2-specific antibodies in the milk of breastfeeding mothers vaccinated with mRNA and convalescent. However, limited information is available in lactating women receiving other vaccine platforms used in developing countries, such as the inactivated SARS-CoV-2 vaccine BBIBP-CorV (Sinopharm) and the non-replicating adenovirus vaccines Sputnik V (Gamaleya Institute) and ChAdOx1-S (Oxford AstraZeneca). Methods: Here, we evaluated anti-SARS-CoV-2 IgG and IgA levels in both serum and milk samples using a longitudinal and a cross-sectional cohort of 208 breastfeeding vaccinated women from Argentina with or without previous SARS-CoV-2 infection. Results: The analysis showed that IgA levels remain constant in serum and milk of breastfeeding mothers between the first and second doses of vector-based vaccines (Sputnik V and ChAdOx1-S). After the second dose, anti-spike IgA was found positive in 100% of the serum samples and in 66% of breastmilk samples. In addition, no significant differences in milk IgA levels were observed in participants receiving BBIBP-CorV, Sputnik V or ChAdOx1-S. IgG levels in milk increased after the second dose of vector-based vaccines. Paired longitudinal samples taken at 45 and 120 days after the second dose showed a decrease in milk IgG levels over time. Study of IgA levels in serum and milk of vaccinated naïve of infection and vaccinated-convalescent breastfeeding participants showed significantly higher levels in vaccinated-convalescent than in participants without previous infection. Conclusion: This study is relevant to understand the protection against SARS-CoV-2 by passive immunity in newborns and children who are not yet eligible to receive vaccination.


Subject(s)
Adenovirus Vaccines , COVID-19 , Viral Vaccines , Infant, Newborn , Child , Humans , Female , COVID-19 Vaccines , SARS-CoV-2 , Milk, Human , Cross-Sectional Studies , Lactation , COVID-19/prevention & control , Antibodies, Viral , Immunoglobulin G , Immunoglobulin A , RNA, Messenger
9.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(6): 571-575, 2022 Jun.
Article in Chinese | MEDLINE | ID: covidwho-1974963

ABSTRACT

OBJECTIVE: To analyze the clinical characteristics of patients inoculated with different vaccines and underlying diseases, infected with the novel coronavirus Omicron variant. METHODS: The data of 430 patients infected with the novel coronavirus Omicron variant who were admitted to Tianjin First Center Hospital from January 21, 2022 to March 7, 2022 were collected. A total of 108 patients with Omicron variant infection with underlying diseases were selected and enrolled. The gender, age, body mass index (BMI), history of underlying diseases, vaccination status (vaccination times, vaccination type), clinical symptoms, laboratory test indicators, imaging data, hospitalization time, nucleic acid negative conversion time, re-positivity and antibody titer from the two groups of the patients were collected and analyzed. RESULTS: In the 108 patients, 93 cases received inactivated vaccine and 15 cases received adenovirus vaccine. There was no statistically significant difference between the two groups in terms of gender, age, BMI, disease types, whether completed the fully vaccinated, whether had prime boost and underlying diseases. Both groups had fever, dry cough, sore throat, runny nose and other clinical symptoms, but there were no statistical difference between the two groups. There were no statistically significant differences in laboratory blood routine tests, biochemical indexes, C-reactive protein (CRP) level and the results of chest computed tomography (CT) imaging between the two groups. There were no statistically significant differences in hospitalization days, nucleic acid negative conversion time, whether admission to intensive care unit (ICU), turn re-positive on nucleic acid tests and immunoglobulin M (IgM) antibody titer expression between the two groups, but immunoglobulin G (IgG) antibody titer in adenovirus group was higher than that in inactivated group (g/L: 229.67±26.13 vs. 194.33±61.56, P = 0.020). There were also no significant differences in laboratory examinations, hospitalization days, nucleic acid negative conversion time, turn re-positive on nucleic acid tests and Novel coronavirus antibody titers expression of the patients with booster shots between the inactivated vaccine group and the adenovirus vaccine group. CONCLUSIONS: The protection of inactivated virus vaccine is equivalent to adenovirus vaccine in patients with underlying disease Omicron variant infection, and the titer of IgG antibody in patients with adenovirus vaccine is higher than that in patients with inactivated virus vaccine after one week of recovery.


Subject(s)
Adenovirus Vaccines , COVID-19 , Nucleic Acids , Humans , Immunoglobulin G , SARS-CoV-2 , Vaccines, Inactivated
10.
Hum Vaccin Immunother ; 18(5): 2079323, 2022 11 30.
Article in English | MEDLINE | ID: covidwho-1900986

ABSTRACT

Flaviviruses are arthropod-borne viruses (arboviruses) that have been recently considered among the significant public health problems in defined geographical regions. In this line, there have been vaccines approved for some flaviviruses including dengue virus (DENV), Japanese encephalitis virus (JEV), yellow fever virus (YFV), and tick-borne encephalitis virus (TBEV), although the efficiency of such vaccines thought to be questionable. Surprisingly, there are no effective vaccine for many other hazardous flaviviruses, including West Nile and Zika viruses. Furthermore, in spite of approved vaccines for some flaviviruses, for example DENV, alternative prophylactic vaccines seem to be still needed for the protection of a broader population, and it originates from the unsatisfying safety, and the efficacy of vaccines that have been introduced. Thus, adenovirus vector-based vaccine candidates are suggested to be effective, safe, and reliable. Interestingly, recent widespread use of adenovirus vector-based vaccines for the COVID-19 pandemic have highlighted the importance and feasibility of their widespread application. In this review, the applicability of adenovirus vector-based vaccines, as promising approaches to harness the diseases caused by Flaviviruses, is discussed.


Subject(s)
Adenovirus Vaccines , COVID-19 , Dengue Virus , Encephalitis Viruses, Tick-Borne , Zika Virus Infection , Zika Virus , Adenoviridae/genetics , COVID-19 Vaccines , Humans , Zika Virus Infection/prevention & control
11.
Can Fam Physician ; 68(6): 434-437, 2022 06.
Article in English | MEDLINE | ID: covidwho-1893726
14.
Front Immunol ; 13: 869042, 2022.
Article in English | MEDLINE | ID: covidwho-1809405

ABSTRACT

A 48-year-old patient affected with congenital generalized lipodystrophy type 4 failed to respond to two doses of the BNT162b2 vaccine, consisting of lipid nanoparticle encapsulated mRNA. As the disease is caused by biallelic variants of CAVIN1, a molecule indispensable for lipid endocytosis and regulation, we complemented the vaccination cycle with a single dose of the Ad26.COV2 vaccine. Adenovirus-based vaccine entry is mediated by the interaction with adenovirus receptors and transport occurs in clathrin-coated pits. Ten days after Ad26.COV2 administration, S- and RBD-specific antibodies and high-affinity memory B cells increased significantly to values close to those observed in Health Care Worker controls.


Subject(s)
Adenovirus Vaccines , COVID-19 , Lipodystrophy, Congenital Generalized , BNT162 Vaccine , COVID-19 Vaccines/adverse effects , Humans , Liposomes , Middle Aged , Nanoparticles , SARS-CoV-2 , Vaccination
15.
Viruses ; 14(4)2022 04 01.
Article in English | MEDLINE | ID: covidwho-1776357

ABSTRACT

About two years have passed since the identification of SARS-CoV-2 in China. The rapid spread of this virus all over the world and its high transmissibility and pathogenicity in humans have resulted in a global pandemic. The negative impact of COVID-19 on health, society and the economy at the global level has pushed researchers and pharmaceutical companies to develop effective vaccines to fight SARS-CoV-2. Thanks to this collaborative effort, the first COVID-19 vaccine was developed in less than a year. Since then, several COVID-19 vaccines have been validated for use by the World Health Organization. Among these, mRNA- (BNT162b2 and mRNA1273) and adenovirus-based (ChAdOx1) vaccines were developed through the use of novel technologies. While all three of these vaccines have shown effectiveness against the COVID-19 disease and their immunogenicity was characterized in clinical trials in the general population, data on their efficacy and immunogenicity in people living with HIV (PLWH) are limited. In this review, we provide a description of the characteristics of mRNA- and adenovirus-based vaccines and of the immune response elicited in the general population by vaccination. Then we describe the use of these vaccines and their efficacy and immunogenicity in people living with HIV and we conclude with a discussion regarding some open questions concerning the use of mRNA- and adenovirus-based COVID-19 vaccines in PLWH.


Subject(s)
Adenoviridae Infections , Adenovirus Vaccines , COVID-19 , HIV Seropositivity , Adenoviridae/genetics , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunogenicity, Vaccine , RNA, Messenger/genetics , SARS-CoV-2/genetics , Vaccination
16.
J Am Soc Nephrol ; 33(4): 688-697, 2022 04.
Article in English | MEDLINE | ID: covidwho-1686209

ABSTRACT

BACKGROUND: Studies have demonstrated that mRNA-based SARS-CoV-2 vaccines are highly effective among patients on dialysis. Because individual vaccines may be differentially available or acceptable to patients, it is important to understand comparative effectiveness relative to other vaccines, such those on the basis of adenovirus technologies. METHODS: In this retrospective study, we compared the clinical effectiveness of adenovirus vector-based Ad26.COV2.S (Janssen/Johnson & Johnson) to mRNA-based BNT162b2 (Pfizer/BioNTech) in a contemporary cohort of patients on dialysis. Patients who received a first BNT162b2 dose were matched 1:1 to Ad26.COV2.S recipients on the basis of date of first vaccine receipt, US state of residence, site of dialysis care (in-center versus home), history of COVID-19, and propensity score. The primary outcome was the comparative rate of COVID-19 diagnoses starting in the 7th week postvaccination. In a subset of consented patients who received Ad26.COV2.S, blood samples were collected ≥28 days after vaccination and anti-SARS-CoV-2 immunoglobulin G antibodies were measured. RESULTS: A total of 2572 matched pairs of patients qualified for analysis. Cumulative incidence rates of COVID-19 did not differ for BNT162b2 versus Ad26.COV2.S. No differences were observed in peri-COVID-19 hospitalizations and deaths among patients receiving BNT162b2 versus Ad26.COV2.S, who were diagnosed with COVID-19 during the at-risk period. Results were similar when excluding patients with a history of COVID-19, in subgroup analyses restricted to patients who completed the two-dose BNT162b2 regimen, and in patients receiving in-center hemodialysis. SARS-CoV-2 antibodies were detected in 59.4% of 244 patients who received Ad26.COV2.S. CONCLUSIONS: In a large real-world cohort of patients on dialysis, no difference was detected in clinical effectiveness of BNT162b2 and Ad26.COV2.S over the first 6 months postvaccination, despite an inconsistent antibody response to the latter.


Subject(s)
Adenovirus Vaccines , COVID-19 , Ad26COVS1 , Adenoviridae/genetics , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , RNA, Messenger , Renal Dialysis , Retrospective Studies , SARS-CoV-2
17.
Clin Infect Dis ; 75(7): 1179-1186, 2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-1672153

ABSTRACT

BACKGROUND: Rare cases of thrombosis and thrombocytopenia (thrombosis with thrombocytopenia syndrome [TTS]) have been associated with 2 coronavirus disease 2019 adenovirus vector vaccines: the ChAdOx1 nCoV-19 Vaxzevria vaccine (Oxford/AstraZeneca) and the JNJ-7836735 Johnson & Johnson vaccine (Janssen). It is unknown if TTS is a class-mediated effect of adenovirus-based vaccines or if it could worsen known hypercoagulable states. Since most cases of TTS happen in women of childbearing age, pregnancy is a crucial risk factor to assess. Understanding these risks is important for advising vaccine recipients and future adenovirus vector vaccine development. METHODS: To explore the potential associations of adenovirus-based vaccine components with symptoms of TTS in the general clinical trial population and in pregnant women in clinical trials, we conducted a systematic review and meta-analysis of adenovirus-based vector vaccines to document cases of thrombocytopenia, coagulopathy, and or pregnancy from 1 January 1966 to 9 August 2021. RESULTS: We found 167 articles from 159 studies of adenovirus vector-based vaccines, 123 of which targeted infectious diseases. In the general population, 20 studies reported an event of thrombocytopenia and 20 studies indicated some coagulopathy. Among pregnant women, of the 28 studies that reported a total of 1731 pregnant women, thrombocytopenia or coagulopathy were not reported. CONCLUSIONS: In this systematic review and meta-analysis, there was no class-wide effect of adenovirus vector vaccines toward thrombocytopenia or coagulopathy events in the general population or in pregnant women.


Subject(s)
Adenovirus Vaccines , COVID-19 , Thrombocytopenia , Thrombosis , Vaccines , Adenoviridae/genetics , ChAdOx1 nCoV-19 , Female , Humans , Pregnancy , Thrombosis/etiology
18.
J Infect Dis ; 225(1): 34-41, 2022 01 05.
Article in English | MEDLINE | ID: covidwho-1605626

ABSTRACT

BACKGROUND: Vaccines that are shelf stable and easy to administer are crucial to improve vaccine access and reduce severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission around the world. METHODS: In this study, we demonstrate that an oral, adenovirus-based vaccine candidate protects against SARS-CoV-2 in a Syrian hamster challenge model. RESULTS: Hamsters administered 2 doses of VXA-CoV2-1 showed a reduction in weight loss and lung pathology and had completely eliminated infectious virus 5 days postchallenge. Oral immunization induced antispike immunoglobulin G, and neutralizing antibodies were induced upon oral immunization with the sera, demonstrating neutralizing activity. CONCLUSIONS: Overall, these data demonstrate the ability of oral vaccine candidate VXA-CoV2-1 to provide protection against SARS-CoV-2 disease.


Subject(s)
Adenovirus Vaccines/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Mesocricetus , Adenovirus Vaccines/immunology , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/virology , COVID-19 Vaccines/immunology , Cricetinae , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
19.
Drug Metab Pharmacokinet ; 42: 100432, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1597676

ABSTRACT

Replication-incompetent adenovirus (Ad) vectors have been widely used as gene delivery vehicles in both gene therapy studies and basic studies for gene function analysis due to their highly advantageous properties, which include high transduction efficiencies, relatively large capacities for transgenes, and high titer production. In addition, Ad vectors induce moderate levels of innate immunity and have relatively high thermostability, making them very attractive as potential vaccine vectors. Accordingly, it is anticipated that Ad vectors will be used in vaccines for the prevention of infectious diseases, including Ebola virus disease and acquired immune deficiency syndrome (AIDS). Much attention is currently focused on the potential use of an Ad vector vaccine for coronavirus disease 2019 (COVID-19). In this review, we describe the basic properties of an Ad vector, Ad vector-induced innate immunity and immune responses to Ad vector-produced transgene products. Development of novel Ad vectors which can overcome the drawbacks of conventional Ad vector vaccines and clinical application of Ad vector vaccines to several infectious diseases are also discussed.


Subject(s)
Adenovirus Vaccines , COVID-19 , Communicable Diseases , Vaccines , Adenoviridae/genetics , Genetic Vectors/genetics , Humans , SARS-CoV-2
20.
Vaccine ; 40(4): 574-586, 2022 01 28.
Article in English | MEDLINE | ID: covidwho-1586276

ABSTRACT

A series of recombinant human type 5 adenoviruses that express the full-length or membrane-truncated spike protein (S) of SARS-CoV-2 (AdCoV2-S or AdCoV2-SdTM, respectively) was tested the efficacy against SARS-CoV-2 via intranasal (i.n.) or subcutaneous (s.c.) immunization in a rodent model. Mucosal delivery of adenovirus (Ad) vaccines could induce anti-SARS-CoV-2 IgG and IgA in the serum and in the mucosal, respectively as indicated by vaginal wash (vw) and bronchoalveolar lavage fluid (BALF). Serum anti-SARS-CoV-2 IgG but not IgA in the vw and BALF was induced by AdCoV2-S s.c.. Administration of AdCoV2-S i.n. was able to induce higher anti-SARS-CoV-2 binding and neutralizing antibody levels than s.c. injection. AdCoV2-SdTM i.n. induced a lower antibody responses than AdCoV2-S i.n.. Induced anti-S antibody responses by AdCoV2-S via i.n. or s.c. were not influenced by the pre-existing serum anti-Ad antibody. Novelty, S-specific IgG1 which represented Th2-mediated humoral response was dominantly induced in Ad i.n.-immunized serum in contrast to more IgG2a which represented Th1-mediated cellular response found in Ad s.c.-immunized serum. The activation of S-specific IFN-É£ and IL-4 in splenic Th1 and Th2 cells, respectively, was observed in the AdCoV2-S i.n. and s.c. groups, indicating the Th1 and Th2 immunity were activated. AdCoV2-S and AdCoV2-SdTM significantly prevented body weight loss and reduced pulmonary viral loads in hamsters. A reduction in inflammation in the lungs was observed in AdCoV-S via i.n. or s.c.-immunized hamsters following a SARS-CoV-2 challenge. It correlated to Th1 cytokine but no inflammatory cytokines secretions found in AdCoV-S i.n. -immunized BALF. These results indicate that intranasal delivery of AdCoV2-S vaccines is safe and potent at preventing SARS-CoV-2 infections.


Subject(s)
Adenovirus Vaccines , COVID-19 , Animals , Antibodies, Viral , COVID-19 Vaccines , Cricetinae , Female , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL